Math 255B Lecture 5 Notes

Daniel Raban

January 15, 2020

1 The Toeplitz Index Theorem and Analytic Fredholm Theory

1.1 The Toeplitz index theorem

Last time, we had the Hardy space $H \subseteq L^2(\mathbb{R}/2\pi\mathbb{Z})$ of functions u with $\hat{u}(n) = 0$ for n < 0. Given $f \in C(\mathbb{R}/2\pi\mathbb{Z})$, we defined $\text{Top}(f) = \pi M_f$.

Theorem 1.1 (Toeplitz index theorem). If $f \in C(\mathbb{R}/2\pi\mathbb{Z})$ is nonvanishing, then Top(f) is Fredholm on H, and $\text{ind Top}(f) = -winding \ number(f)$.

Proof. We had the claim that for all $f, g \in C(\mathbb{R}/2\pi\mathbb{Z})$, then $\operatorname{Top}(f) \operatorname{Top}(g) - \operatorname{Top}(fg)$ is compact. We saw that this is $\pi[M_f, \pi]M_g$, so we only need to show that $[M_f, \pi]$ is compact from $L^2 \to L^2$. If $f(\theta) = e^{in\theta}$ (or more generally, a trigonometric polynomial), then $[M_f, \pi]$ is of finite rank; we showed this last time.

In general, given $f \in C(\mathbb{R}/2\pi\mathbb{Z})$, let f_n be trigonometric polynomials such that $f_n \to f$ uniformly on $\mathbb{R}/2\pi\mathbb{Z}$. Then

$$\|[M_f,\pi] - [M_{f_n},\pi]\| = \|[M_{f-f_n},\pi]\| \le 2\|f - f_n\|_u \to 0.$$

So $[M_f, \pi]$ is compact, and we get the claim.

If $f \neq 0$, we take g = 1/f, so Top(f) Top(g) - I is compact. So Top(f) is Fredholm. To compute ind Top(f), observe that if g, h are continuous (and nonvanishing), then

 $\operatorname{ind} \operatorname{Top}(gh) = \operatorname{ind}(\operatorname{Top}(g) \operatorname{Top}(h)) = \operatorname{ind} \operatorname{Top}(g) + \operatorname{ind} \operatorname{Top}(f).$

Write $f(\theta) = r(\theta)e^{-\varphi(\theta)}$ with r, φ continuous on $[0, 2\pi]$ and r > 0. Then

$$\operatorname{ind}\operatorname{Top}(f) = \operatorname{ind}\operatorname{Top}(r) + \operatorname{ind}\operatorname{Top}(e^{i\varphi})$$

We have ind $\text{Top}(r) = \text{ind Top}(r_t)$ for $0 \le t \le 1$, where $r_t(\theta) = (1-t)r(\theta) + t \ge 0$. So ind Top(r) = 0.

$$=$$
 ind Top $(e^{i\varphi})$.

To compute ind Top $(e^{i\varphi})$, consider $f_t(\theta) = e^{(1-t)i\varphi(\theta) + iNt\theta}$ for $0 \le t \le 1$, where $N = \frac{\varphi(2\pi)-\varphi(0)}{2\pi}$ is the winding number. Then f_t is 2π -periodic and continuous in t. We get

ind
$$\operatorname{Top}(e^{i\varphi}) = \operatorname{ind} \operatorname{Top}(f_t)$$

= ind $\operatorname{Top}(e^{iN\theta})$

In general, if T is Fredholm, $\operatorname{ind} T = \dim \ker T - \dim \ker T^*$.

$$= \dim \ker \operatorname{Top}(e^{iN\theta}) - \dim \ker \operatorname{Top}(e^{iN\theta})^*$$

To find the adjoint, we have $\langle \operatorname{Top}(f)u, v \rangle_{L^2} = \langle \pi(fu), v \rangle_{L^2} = \langle fu, v \rangle_{L^2} = \langle u, \overline{f}v \rangle_{L^2} = \langle \pi u, \overline{f}v \rangle_{L^2} = \langle u, \operatorname{Top}(\overline{f})v \rangle$. So $\operatorname{Top}(f)^* = \operatorname{Top}(\overline{f})$.

$$= \dim \ker \operatorname{Top}(e^{iN\theta}) - \dim \ker \operatorname{Top}(e^{-iN\theta}).$$

Here, we have

$$\dim \ker \operatorname{Top}(e^{iN\theta}) = \begin{cases} 0 & N \ge 0\\ -N & N < 0 \end{cases}$$

Altogether, we get

$$\operatorname{ind} \operatorname{Top}(f) = -N.$$

1.2 Analytic Fredholm Theory

Definition 1.1. Let $\Omega \subseteq \mathbb{C}$. A holomorphic family $T(z) \in \mathcal{L}(B_1, B_2)$ for $z \in \Omega$ is a family such that $\Omega \to \mathcal{L}(B_1, B_2)$ sending $z \mapsto T(z)$ is holomorphic (as an operator-valued function).

Remark 1.1. We can define holomorphic operator-valued functions in two ways: $z \mapsto T(z)$ is holomorphic if

- 1. For all $z \in \Omega$, $\left\|\frac{T(z+h)-T(z)}{h} T'(z)\right\| \to 0$ as $h \to 0$ for some $T'(z) \in \mathcal{L}(B_1, B_2)$.
- 2. For every $x \in B_1$ and $\xi \in B_2^*$, $z \mapsto \langle T(z)x, \xi \rangle$ is holomorphic.

Theorem 1.2 (analytic Fredholm theory). Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $T(z) \in \mathcal{L}(B_1, B_2)$ for $z \in \Omega$ be a holomorphic family of Fredholm operators. Assume that there exists a $z_0 \in \Omega$ such that $T(z_0) : B_1 \to B_2$ is bijective. Then the set

$$\Sigma = \{ z \in \Omega : T(z) \text{ is not bijective} \}$$

is discrete.

Proof. Notice first that $\operatorname{ind} T(z) = \operatorname{ind} T(z_0) = 0$ for all z. Let $z_1 \in \Omega$, and write $n_0(z_1) = \dim \operatorname{ker} T(z_1) = \dim \operatorname{coker} T(z_1)$. Introduce the Grushin operator

$$\mathcal{P}_{z_1}(z) = \begin{bmatrix} T(z) & R_-(z_1) \\ R_+(z_1) & 0 \end{bmatrix} : B_1 \oplus \mathbb{C}^{n_0(z_1)} \to B_2 \oplus \mathbb{C}^{n_0(z_1)}.$$

We know that $\mathcal{P}_{z_1}(z_1)$ is invertible. So there is a connected neighborhood $N(z_1) \subseteq \Omega$ of z_1 such that $\mathcal{P}_{z_1}(z)$ is bijective for $z \in N(z_1)$, depending holomorphically on z. Let

$$\mathcal{E}_{z_1}(z) = \mathcal{P}_{z_1}(z)^{-1} : B_2 \oplus \mathbb{C}^{n_0(z_1)} \to B_1 \oplus \mathbb{C}^{n_0(z_1)}$$
$$\mathcal{E}_{z_1}(z) = \begin{bmatrix} E(z) & E_+(z) \\ E_-(z) & E_{-+}(z) \end{bmatrix},$$

depending holomorphically on z.

We claim that for $z \in N(z_1)$, $T(z) : B_1 \to B_2$ is bijective $\iff E_{-+}(z) : \mathbb{C}^{n_0} \to \mathbb{C}^{n_0}$ is bijective. This will allow us to analyze invertibility of T(z) via a holomorphic function, det $E_{-+}(z)$.